
Security Audit Report

Date: October 11, 2024
Project: PBG Decentralized Vault Portfolios
Version 1.0

Contents

Disclosure 1

Disclaimer and Scope 2

Assessment overview 3

Assessment components 4

Executive summary 5

Code base 7
Repository . 7
Commit . 7
Files audited . 7

Severity Classification 10

Finding severity ratings 11

Findings 12
ID-501 Unauthorized Asset Additions . 13
ID-502 Unbounded Voucher Claim . 15
ID-503 Incorrect Reimbursement Calculation . 16
ID-504 Price Manipulation . 17
ID-505 Locked Assets Group . 18
ID-401 Missing Success Fee Validation . 21
ID-402 Reimbursement Multiple Satisfaction . 22
ID-403 Invalid Voucher NFT . 23
ID-404 Lost Management Fee . 25
ID-405 Reimbursement Failure . 27
ID-406 Cannot Provide Vouchers . 28
ID-407 Unnecessary Config Spend . 30
ID-301 Token Dust . 32
ID-201 Locked Portfolio Reduction . 33
ID-202 Mandatory Reimbursement Return . 35
ID-203 Restricted Only-ADA Output . 36
ID-204 Voucher Overcompensation . 37

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs

https://anastasialabs.com/

ID-101 Asset Count Tick Redundant . 38
ID-102 Inefficient Fund Policy Action Ordering . 39
ID-103 Inefficient Reduction - Exists . 41
ID-104 Optimize Function diff_counted . 42
ID-105 Redundant Mint Check . 43
ID-106 Redundant Output Asset Iteration . 44
ID-107 Duplicated Voucher Check . 45
ID-108 Unnecessary Output Traversal . 46

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs

https://anastasialabs.com/

Disclosure

This document contains proprietary information belonging to Anastasia Labs.
Duplication, redistribution, or use, in whole or in part, in any form, requires explicit
consent from Anastasia Labs.

Nonetheless, both the customer PBG Capital and Anastasia Labs are authorized to share
this document with the public to demonstrate security compliance and transparency
regarding the outcomes of the Protocol.

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 1 of 46

https://anastasialabs.com/

Disclaimer and Scope

A code review represents a snapshot in time, and the findings and recommendations
presented in this report reflect the information gathered during the assessment period.
It is important to note that any modifications made outside of this timeframe will not be
captured in this report.

While diligent efforts have been made to uncover potential vulnerabilities, it is essential
to recognize that this assessment may not uncover all potential security issues in the
protocol.

It is imperative to understand that the findings and recommendations provided in this
audit report should not be construed as investment advice.

Furthermore, it is strongly recommended that projects consider undergoing multiple
independent audits and/or participating in bug bounty programs to increase their
protocol security.

Please be aware that the scope of this security audit does not extend to the compiler layer,
such as the UPLC code generated by the compiler or any areas beyond the audited code.

The scope of the audit did not include additional creation of unit testing or property-based
testing of the contracts.

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 2 of 46

https://anastasialabs.com/

Assessment overview

From July 10th, 2024 to October 4th, 2024, PBG Capital engaged Anastasia Labs to
evaluate and conduct a security assessment of its PBG Decentralized Vault Portfolios
protocol. All code revision was performed following industry best practices.

Phases of code auditing activities include the following:

• Planning – Customer goals are gathered.

• Discovery – Perform code review to identify potential vulnerabilities, weak areas, and
exploits.

• Attack – Confirm potential vulnerabilities through testing and perform additional
discovery upon new access.

• Reporting – Document all found vulnerabilities.

The engineering team has also conducted a comprehensive review of protocol
optimization strategies.

Each issue was logged and labeled with its corresponding severity level, making it easier
for our audit team to manage and tackle each vulnerability.

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 3 of 46

https://anastasialabs.com/

Assessment components

Manual revision

Our manual code auditing is focused on a wide range of attack vectors, including but not
limited to.

• UTXO Value Size Spam (Token Dust Attack)

• Large Datum or Unbounded Protocol Datum

• EUTXO Concurrency DoS

• Unauthorized Data modification

• Multisig PK Attack

• Infinite Mint

• Incorrect Parameterized Scripts

• Other Redeemer

• Other Token Name

• Arbitrary UTXO Datum

• Unbounded protocol value

• Foreign UTXO tokens

• Double or Multiple satisfaction

• Locked Ada

• Locked non Ada values

• Missing UTXO authentication

• UTXO contention

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 4 of 46

https://anastasialabs.com/

Executive summary

The current financial system suffers from inefficiencies, high costs, and a lack of
transparency. These issues are particularly prominent in the asset management
industry, where investors encounter limited access to asset classes, reliance on
custodians, and opaque portfolio management processes. This increases risks and
reduces control.

PBG addresses these issues through Decentralized Vault Portfolios
(DVPs)—blockchain-powered, non-custodial digital asset portfolios that prioritize
transparency and security. Key features of the DVP protocol include:

1. Tokenization of Shares

Each DVP represents a tokenized portfolio, where each token corresponds to a share of the
vault’s assets. The total portfolio value is regularly updated via Oracle price feeds. Tokens
are minted or burned as investors enter or exit the portfolio, with the on-chain token price
reflecting the ratio of the portfolio’s total value to the number of tokens in circulation.

2. Fee Structure

• Mint Fee: Charged upon entry to support protocol operation costs, typically ranging
from 0.1% to 2%.

• Burn Fee: Charged upon withdrawal to support protocol operation costs, this fee
also ranges between 0.1% and 2%.

• Management Fee: Charged daily to maintain infrastructure, this fee is applied
through proportional token dilution, influencing the token price over time.

• Success Fee: A performance-based fee that incentivizes positive returns, deducted
only if the portfolio surpasses a set benchmark. This fee is tracked on-chain with NFT
vouchers to ensure fair reimbursement of success fee dilution at the end of each
cycle.

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 5 of 46

https://anastasialabs.com/

3. Non-Custodial Vault

Assets within a DVP are securely held in a vault smart contract. The asset manager is
restricted to executing value-for-value swaps, with Oracle price feeds ensuring each swap
is either neutral or beneficial to the vault. User funds are thus safeguarded by enforcing
strict operational boundaries on the asset manager.

4. Large Investment Universe

DVPs can accommodate a broad array of assets, with on-chain counters tracking
quantities. These counters can be added or removed via governance actions, and
investors can enter or exit using any combination of assets within the vault’s supported
asset universe.

5. On-Chain Governance

All smart contract parameters can only be modified through governance actions,
accompanied by a delay to allow investors time to withdraw if desired. Governance actions
are witnessed by a governance delegate, which can be any on-chain logic, ranging from
a multi-signature script to a decentralized autonomous organization (DAO) contract.

6. AML/CFT Compliance

Investors interact with the vault via orders, and only AML and CFT compliant orders are
processed. Irregular orders are ignored to prevent contamination of the vault. Investors
retain the option to cancel pending orders at any time.

Conclusion

The PBG Decentralized Vault Portfolio (DVP) protocol mirrors the functionalities of
traditional asset management funds, providing transparent asset management and fee
structures within a non-custodial, blockchain framework. Smart contract parameters
are modifiable through a balanced governance model, while compliant operations are
maintained through a secure order-based system.

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 6 of 46

https://anastasialabs.com/

Code base

Repository

https://github.com/PBGToken/validators

Commit

cb76208b23b97dfd13515b3da2f42a93dada6b83

Files audited

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 7 of 46

https://anastasialabs.com/

SHA256 Checksum Files

e066300cfd2d9e7fb8d49d159107447a7
93af7de8dd67d05f489ecf4182b10d9 src/assets_validator.hl

79e16e92e183cf4cb73c60cf939250c42f
201ed9c8825b270f0f31e43aa9c401 src/benchmark_delegate.hl

7489c075592d18e323c054b052e7ac28
8c52ba41202aabe81d18cfb7b6d7bbab src/burn_order_validator.hl

4af98a9d99a76122c20d15b7b7856f1c8
09ed81d57cf0c2c182446f3f8b6e507 src/config_validator.hl

643bf55e9305a1a6fe1bb79f468130109
8eff5e422cfd9e690b370a217058622 src/fund_policy.hl

b7087bd932898579b78b3b135105428
98fc685032e4b7d69fa9ca999f71e17e8 src/governance_delegate.hl

f8b6eb3d3670c9248f8d7690623fb5073
b321f70500e1831f50029013f539d42 src/metadata_validator.hl

c2b013da2ba442fe311542abc89fe697f3
af67d6e79f83fcda0035adec30c673 src/mint_order_validator.hl

4baeeca9b0844a3bb7aa155652da2893f
a5dcf9d9d12d5dcdbd7fced0a7fe265 src/oracle_delegate.hl

36d71a27d0edc3b6b113a24a70af3e429
406a0bb7c79fc371273def02af28152 src/portfolio_validator.hl

404581a3168155e0eefa0a1cefa4427a08
fb8e4cca6c4f6c9cfa3ff0946393b4 src/price_validator.hl

a493def266ffbb3fb3657d3bf72c29a46bf
0857c4eca44c78e6bc616f7372181 src/reimbursement_validator.hl

87f757ae26cdc3b1a32927eaec9239d27
ac257fe229731232f0e4fbc47136bd1 src/supply_validator.hl

5f398fb1c7f90d66757f17590350536f6b
b2895906874d530dfa61413855a825 src/voucher_validator.hl

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 8 of 46

https://anastasialabs.com/

SHA256 Checksum Files

165fecb50e506973a2a788dc7c48adf692
21faf9ba239133d2c5b0a9fba006b7 src/lib/Addresses.hl

d6ea1273488d9cace73734cf28652fd45
03024a097f371b0b3c04db2fabc8fa9 src/lib/Asset.hl

f4bd54b4820ae501572be05532889d4d
4f036498bb8578a6ff3a6f31023453b1 src/lib/AssetGroup.hl

389a817a8c1b4ee553ac77dc4db2d2f95
91113101694646b96ec89c203efb0f8 src/lib/AssetPtr.hl

787845800aa775a23ffb2d3c1c72683ad
bd5f9549d38ab61f4c623fea9629d17 src/lib/BurnOrder.hl

4a7a8671370186d82d8b0424aa74c922
d70a512b33e3f5f5e9ad90d2984b46f9 src/lib/Config.hl

0f996ec797660f704def998ea66b53304
d64c5092e18e12b64040a62a26ba26c src/lib/Metadata.hl

1cb346c7d3862ad3bd0842604c35d19b
46d125f0e778b5e17494f266a0216148 src/lib/MintOrder.hl

8cedaf878fbb30808ee6be9e386a0ae668
192a59c11d15d22a38f3a9964c47df src/lib/Portfolio.hl

64c66b227a3f7e6b02d6a0e854eb13582
49f8700daf6f14fcdeedec40a6f50c9 src/lib/Price.hl

2e59511c1dd55aaf412b6ad7d060f6911f
b0b018cc3b4b1da01923d0bd7b1ab8 src/lib/Reimbursement.hl

b2fcc8fc211cb1c6be70878a2d3eb7f0d1
81318f9d98c2883e43235d58211c8c src/lib/SuccessFee.hl

39d3dccde26761b00fee11dfbe8db50bfa
e5a88d1ac5fa289e6da5651d829675 src/lib/Supply.hl

bd901f28ddee701ce83d4915b5ca77c18
bca4aa14e930c429c74d165940f3349 src/lib/TokenNames.hl

23fe3a35c6ae95461e007cc9c4f0d39989
c3aad8ce72d504c09d91d995baf0d4 src/lib/Tokens.hl

c415d2b7a347df007baa30313851f99cc
7314a86ec2a1110f5660df41645908f src/lib/Vault.hl

596ecf965f06e3eac81a5089c1c43aa92e
42f369ed9fa1bbf7cef7ebd8fd6785 src/lib/Voucher.hl

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 9 of 46

https://anastasialabs.com/

Severity Classification

• Critical: This vulnerability has the potential to result in significant financial losses to
the protocol. They often enable attackers to directly steal assets from contracts or
users, or permanently lock funds within the contract.

• Major: Can lead to damage to the user or protocol, although the impact may be
restricted to specific functionalities or temporal control. Attackers exploiting major
vulnerabilities may cause harm or disrupt certain aspects of the protocol.

• Medium: May not directly result in financial losses, but they can temporarily impair
the protocol’s functionality. Examples include susceptibility to front-running attacks,
which can undermine the integrity of transactions.

• Minor: Minor vulnerabilities do not typically result in financial losses or significant
harm to users or the protocol. The attack vector may be inconsequential or the
attacker’s incentive to exploit it may be minimal.

• Informational: These findings do not pose immediate financial risks. These
may include protocol optimizations, code style recommendations, alignment with
naming conventions, overall contract design suggestions, and documentation
discrepancies between the code and protocol specifications.

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 10 of 46

https://anastasialabs.com/

Finding severity ratings

The following table defines levels of severity and score range that are used throughout
the document to assess vulnerability and risk impact.

Level Severity Findings

5 Critical 5

4 Major 7

3 Medium 1

2 Minor 4

1 Informational 8

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 11 of 46

https://anastasialabs.com/

Findings

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 12 of 46

https://anastasialabs.com/

ID-501 Unauthorized Asset Additions

Level Severity Status

5 Critical Resolved

Description

The Portfolio Validator’s validate_move_assets (MoveAssets action/redeemer), does not
confirm the number of inputs being spent from Assets validator equals the number of
outputs returned to it. This allows one or more asset NFT to be claimed by a malicious
agent in a move assets transaction. This NFT can later be returned to Assets Validator
with new unauthorized assets with arbitrary price and count. Potentially leading to DVP
token price manipulation at agent’s will.

The below on-chain state describes the conditions under which this attack is possible:

Listing 1: src/portfolio_validator.hl
/ / Portfol io datum
Portfol io {

n_groups : 3 ,
reduction : Idle

}

/ / Asset Group datums
const assetGroup1 = AssetGroup {

assets : [assetA , assetB , assetC]
}
/ / Note : Max size for assets array i s three
const assetGroup2 = AssetGroup {

/ / assetF removed after addition of i t via correct
/ / governance action . Leaving one asset entry available in datum
assets : [assetD , assetE]

}
const assetGroup3 = AssetGroup {

assets : [assetG]
}

/ / MoveAssets changes the datum as follows :
const assetGroup1 = AssetGroup {

assets : [assetA , assetB , assetC]
}
const assetGroup2 = AssetGroup {

assets : [assetD , assetE , assetG]
}
/ / Note : Since a l l the assets are present in the new datum and
/ / no new assets are added (yet) , the validation passes . The agent
/ / claims the " asset 3" NFT and then sends i t back to Asset Validator

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 13 of 46

https://anastasialabs.com/

/ / with arbitrary prices and counts
const assetGroup3 = AssetGroup {

assets : [assetH , assetI , assetJ]
}

Recommendation

The number of inputs being spent from Assets validator should equal the number of
outputs returned to it, each having the asset NFT. Additionally, the datums of all outputs
must be checked to conform to AssetGroup .

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 14 of 46

https://anastasialabs.com/

ID-502 Unbounded Voucher Claim

Level Severity Status

5 Critical Resolved

Description

The total number of tokens contained in the vouchers is not checked during the minting
of DVP token. Additionally, mint_order_validator just has a lower bound for the amount
of tokens in each voucher. This allows the agent to set extremely high token amount in
voucher(s) for his own mint orders. These vouchers can be later used to claim all the funds
locked in Reimbursement UTxO before any reimbursement can be provided to legitimate
investors (as the agent himself does the reimbursement processing). Thereby denying
success fee reimbursement to majority/all of the entitled users.

Recommendation

To check that total number of tokens contained in vouchers does not exceed the total
number of DVP token minted.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 15 of 46

https://anastasialabs.com/

ID-503 Incorrect Reimbursement Calculation

Level Severity Status

5 Critical Resolved

Description

The Reimbursement Validator calculates voucher alpha incorrectly. It calculates it as
voucher_price/start_price instead of end_price/voucher_price . This leads to incorrect
voucher_phi_alpha_ratio which is used for obtaining expected reimbursement:

Listing 2: src/reimbursement_validator.hl
expected_reimbursed_tokens = (voucher . tokens * (main_phi_alpha_ratio

− voucher_phi_alpha_ratio)) . f loor () . bound_min(0)

Additionally, since agent is allowed to mint vouchers when voucher_price < start_price ,
voucher alpha in this case turns out to be less than one. This results in
voucher_phi_alpha_ratio == 0 which allows agent to obtain maximum amount of

reimbursement possible for his vouchers. The agent can potentially claim the entire
Reimbursement UTxO amount if he has significant number of vouchers (which can
be easily created when the DVP token price has fallen below start_price), denying
reimbursement to all the deserving users.

Recommendation

To correct voucher alpha calculation to end_price/voucher_price .

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 16 of 46

https://anastasialabs.com/

ID-504 Price Manipulation

Level Severity Status

5 Critical Resolved

Description

The Price Validator misses to check whether the Supply input referenced has the same
tick as that of PortfolioReduction ’s Reducing constructor (the tick of Supply input itself
when reduction started). This allows agent to use a more recent Supply input (an updated
tick) for calculation of DVP token price.

Formula for calculation DVP token price: price = total_value_of_assets/number_of_tokens

Note: number_of_tokens is obtained from Supply datum while total_value_of_assets from
PortfolioReductionMode::TotalAssetValue .

An agent can hence easily manipulate the price by changing the supply of DVP tokens
using mint/burn user orders.

Recommendation

To check that supply.tick == portfolio.start_tick in Price Validator.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 17 of 46

https://anastasialabs.com/

ID-505 Locked Assets Group

Level Severity Status

5 Critical Resolved

Description

The Supply Validator does not ensure that only Asset Token ("assets <group_id>") is
present in output returned to Assets Validator apart from ADA. If more than one native
tokens are sent by the agent either intentionally or erroneously, the UTxO is permanently
locked in Assets Validator. Because Assets Validator relies on having a single native token
in the UTxO being spent to determine the policy of supply or portfolio token to complete
its validation. Upon finding multiple tokens the validation will always fail with an error.

Listing 3: src/lib/Tokens.hl
func indirect_pol icy () −> MintingPolicyHash {

input = get_current_input () ;

/ / ignores ADA
input . value . get_singleton_asset_class () .mph

}

const policy : MintingPolicyHash = current_script . switch {
fund_policy => direct_policy ,
mint_order_validator => direct_policy ,
burn_order_validator => direct_policy ,
supply_validator => indirect_policy () ,
/ / The Asset Validator gets the required policy
assets_validator => indirect_pol icy () ,
portfol io_val idator => indirect_policy () ,
price_validator => indirect_policy () ,
reimbursement_validator => {

input = get_current_input () ;
input . value . get_singleton_asset_class () .mph

} ,
voucher_validator => indirect_policy () ,
config_validator => indirect_policy () ,
metadata_validator => indirect_policy () ,
oracle_delegate => direct_policy ,
benchmark_delegate => direct_policy ,
governance_delegate => direct_policy

}

Similarly, in Portfolio Validator’s validate_move_assets the use of
Tokens::contains_only_any_assets leads to different policy tokens being locked in

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 18 of 46

https://anastasialabs.com/

the Asset Validator output due to the helper method not checking assets belonging to
all policies.

Listing 4: src/lib/Tokens.hl
func contains_only_any_assets [V : Valuable] (v : V) −> Bool {

/ / presence of other policy ids i s not checked
tokens = v . value . get_policy (policy) ;

i f (tokens . length != 1) {
fa lse

} else {
(token_name , qty) = tokens . head ;

i f (qty != 1) {
error (" expected only 1 assets token ")

} else {
TokenNames : : parse_assets (token_name) . switch {

Some => true ,
None => false

}
}

}
}

The Asset UTxOs are needed to be spent for critical protocol actions like minting/burning
DVP tokens or swapping out portfolio tokens. If they are locked permanently, the entire
protocol is bricked.

Recommendation

To assert that only one native token (assets token) is present in the output returned to
asset validator.

Listing 5: src/lib/Vault.hl
func diff_counted (d_lovelace : Int , expected_tick : Int) −> Value {

m: Map[AssetClass] Int = tx . inputs . fold (
(m: Map[AssetClass] Int , input : TxInput) −> {

i f (input . address == Addresses : : assets) {
. . .

id = TokenNames : : parse_assets (token_name) . unwrap () ;
group_asset_class = Tokens : : assets (id) ;

output = tx . outputs . find ((output : TxOutput) −> {
output . address == Addresses : : assets
&& output . value . get_singleton_asset_class ()
/ / Instead of

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 19 of 46

https://anastasialabs.com/

/ / output . value . get_safe (group_asset_class) == 1
== group_asset_class

}) ;
. . .

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 20 of 46

https://anastasialabs.com/

ID-401 Missing Success Fee Validation

Level Severity Status

4 Major Resolved

Description

The Supply Validator does not check that success_fee: SuccessFee field
of Reimbursement is set to config.fees.success_fee.fee: SuccessFee in
validate_reward_success ; the configuration used to calculate the success fee, upon

which the user reimbursement actually depends. Without this check, the agent can
initialize success_fee to any value. A higher than actual success fee robs users of their
reimbursement while a lower one denies the protocol of its earnings.

Recommendation

To validate that reimbursement.success_fee == config.fees.success_fee.fee

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 21 of 46

https://anastasialabs.com/

ID-402 Reimbursement Multiple Satisfaction

Level Severity Status

4 Major Resolved

Description

The Reimbursement Validator does not enforce the following conditions:

• To allow sResolved in 0b08946c6d988330598e2ae0817ad47178883b09 of just
one Reimbursement UTxO in a transaction.

• The vouchers being burnt have the same period_id as for which the Reimbursement
UTxO belongs.

Additionally, it relies on voucher_validator.hl to check that transaction spends
Reimbursement UTxO having the same period_id as that of voucher. However, this
validation does allows vouchers with different period_ids to be spent as long as the
transaction spends Reimbursement UTxOs for all the period_ids.

The above allows a dishonest agent to acquire DVP tokens from many
Reimbursement UTxOs via Multiple Satisfaction Attack. The vouchers need to
be selected such that its possible to either burn all the Reimbursement NFTs
(when n_vouchers_burned >= reim.n_remaining_vouchers holds true, that particular
Reimbursement NFT can be burnt and UTxO’s holdings claimed) or have just one of
them returned to the validator with correct balance.

While it can be presumed that reimbursement validator will not have more than one
Reimbursement UTxO at any given point in time, given the protocol’s success fee earning
is locked till all the reimbursements are carried out. This presumption is challenged when
the success fee period is of relatively shorter durations (period <<< 1 year). This happens
to be the case currently, as the protocol is initiated with two weeks as success fee period.

Recommendation

By enforcing that all vouchers being burnt have the same period_id as for which the
Reimbursement UTxO belongs in validate_burned_vouchers .

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 22 of 46

https://anastasialabs.com/

ID-403 Invalid Voucher NFT

Level Severity Status

4 Major Resolved

Description

Listing 6: src/supply_validator.hl
/ / CIP−68 Voucher NFT
const voucher_infix : ByteArray = "voucher " . encode_utf8 ()
const voucher_ref_prefix : ByteArray = Cip67 : : reference_token_label

+ voucher_infix
const voucher_nft_prefix : ByteArray = Cip67 : : user_nft_label

+ voucher_infix

const voucher_id_ref_token_name = voucher_ref_prefix
+ id . show() . encode_utf8 ()

const voucher_id_nft_token_name = voucher_nft_prefix
+ id . show() . encode_utf8 ()

The Supply datum maintains the last_voucher_id::Int field which keeps track of the
last voucher id minted. However, upon success fee claim by the agent, last_voucher_id
is again set to 0, implying that for a new success period, the voucher minting once again
begins from id 1. Since, success fee period id is not included in voucher token name
(its maintained in the datum of UTxO with reference token), this leads to voucher token
names being duplicated thereby rendering them FTs instead of NFTs.

The most prominent issue as a result of above surfaces in the below scenario: At Voucher
Validator - voucher_ref_token_1 (datum: period_id = 2, return_address = user_2_address)

At User 1 Wallet - voucher_nft_token_1

At User 2 Wallet - voucher_nft_token_1

Note: User 1 got voucher_nft_token_1 when he minted DVP token during success
period_id 1. Its corresponding voucher_ref_token_1 (datum: period_id = 1, return_address
= user_1_address) was burnt during reimbursement process after the success period
ended.

In addition to being reimbursed for his voucher, User 1 can use the voucher belonging to
User 2 by placing a burn order of his DVP token along with his voucher_nft_token_1. He
receives a discount on success fee because of the voucher; with both voucher_ref_token_1
and voucher_nft_token_1 getting burnt in the process. This robs User 2 of his voucher.

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 23 of 46

https://anastasialabs.com/

Recommendation

To not reset the last_voucher_id but instead, persist it’s value during every success fee
claim.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 24 of 46

https://anastasialabs.com/

ID-404 Lost Management Fee

Level Severity Status

4 Major Resolved

Description

The protocol intends to collect management fees on a daily basis currently. Once
the management fee is taken, the management_fee_timestamp::Time of Supply datum
is updated such that supply_out.management_fee_timestamp >= tx1.time_range.end .
The next management fee can only be claimed after a day’s time from
supply_out.management_fee_timestamp such that

supply_out . management_fee_timestamp <= tx2 . time_range . start
− config . fees . management_fee . period

This methodology introduces a small time difference between the intended duration in
which management fee must be taken (24 hours) versus the actual duration (24 hours +
the validity range of the transaction). While this difference is small, it gets accumulated
over the year.

Management Fee Loss Estimate (Best Case): Assuming a reasonable tx validity range (to
cover cases of heavy chain load): 10 minutes After 144 successive managment fee claims,
time lost: 144 * 10 minutes = 24 * 60 mintues = 1 day After 288 successive managment
fee claims, time lost: 288 * 10 minutes = 2 * 24 * 60 mintues = 2 days

So in effect 2 days worth of management fees (at 0.011% per day) would be
lost in a year. It must be noted that, this is when the tx.time_range.start is
exactly supply_in.management_fee_timestamp + config.fees.management_fee.period ,
supply_out.management_fee_timestamp = tx.time_range.end and every submitted

transaction is always confirmed on chain. Carrying this out meticulously would make the
offchain logic more complex too as the exact timestamp to begin the transaction from
will keep changing. Not to mention, any time delay in taking the fee after it was allowed
would contribute to days for which management fee cannot be claimed, potentially
leading to substantial number of days without management fee. This reduces the actual
management fee earned by number_of_days_lost * 0.011% .

Recommendation

The recommendation is to make the time keeping of management fee somewhat similar
to that of success fee via these conditions:

Listing 7: src/portfolio_validator.hl
/ / In fn main
else i f (supply1 . management_fee_timestamp != supply0 . management_fee_timestamp

| | supply0 . management_fee_timestamp

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 25 of 46

https://anastasialabs.com/

+ config . fees . management_fee . period < tx . time_range . end
) {

validate_reward_management (supply0 , supply1 , D)
}

/ / In fn validate_reward_management
&& supply1 . management_fee_timestamp == supply0 . management_fee_timestamp

+ config . fees . management_fee . period
&& supply0 . management_fee_timestamp < tx . time_range . start
&& supply1 . management_fee_timestamp < tx . time_range . end
/ / already enforced
&& tx . time_range . end − tx . time_range . start < Duration : : DAY

Note: This allows management fee to be taken once, any time during the period, even
when it just started. Additionally, it enforces the agent to take management fees as
opposed to skipping it earlier.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 26 of 46

https://anastasialabs.com/

ID-405 Reimbursement Failure

Level Severity Status

4 Major Resolved

Description

Reimbursement Validator requires voucher reference nfts to be burnt in the transaction
for reimbursement and success fee claim to happen. The Fund Policy, which is the
minting policy for all the protocol tokens including voucher reference nfts, has not
provisioned minting or burning when reimbursement token is spent in the transaction.
This results in permanent locking of success fees and user reimbursements in the
reimbursement validator.

Recommendation

To allow Fund Policy to burn only voucher reference tokens and/or reimbursement token
when reimbursement token is spent in a transaction.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 27 of 46

https://anastasialabs.com/

ID-406 Cannot Provide Vouchers

Level Severity Status

4 Major Resolved

Description

Upon mint order fulfillment, the return_address needs to be provided the minted DVP
token along with voucher (if the current benchmark price is greater than start of the year
benchmark price).

Listing 8: src/lib/MintOrder.hl
func voucher_id (s e l f) −> Int {

/ / check returned voucher
(voucher_nft_name , qty) =
s e l f . d i f f () . get_policy (Tokens : : policy)

. find ((token_name : ByteArray , _)
−> {

TokenNames : : has_voucher_nft_prefix (token_name)
}) ;
/ / qty w i l l always be negative
assert (qty >= 1 , "expected at least one token ") ;

TokenNames : : parse_voucher_nft (voucher_nft_name) . unwrap ()
}

func d i f f (s e l f) −> Value {
input : TxInput = current_script . switch {

mint_order_validator => get_current_input () ,
else => error (" unexpected ")

} ;

return = s e l f . find_return () ;

input . value − return . value
}

Obtaining the (voucher_nft_name, qty) from self.diff() will always result in negative
qty as difference is calculated as input.value - return.value . This will always prevent

voucher nft being sent to user leading to failed validation in Mint Order Validator.
Therefore, no mint orders can be fulfilled leading to protocol halting.

Recommendation

A check on negated quantity (-1)*qty should be done instead.

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 28 of 46

https://anastasialabs.com/

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 29 of 46

https://anastasialabs.com/

ID-407 Unnecessary Config Spend

Level Severity Status

4 Major Resolved

Description

Almost all the protocol actions require transactions signed by a trusted
agent (available in Config). Current implementation requires sResolved in
0b08946c6d988330598e2ae0817ad47178883b09 of config UTxO to fetch the
agent information rather than simply referencing the UTxO.

Listing 9: src/lib/Config.hl
func signed_by_agent (

agent : PubKeyHash = Config : : find_input () . agent
) −> Bool {

tx . is_signed_by (agent)
}

func find_input () −> Config {
input = current_script . switch {

config_validator => get_current_input () ,
else => tx . inputs . find ((input : TxInput) −> {

input . address == Addresses : : config
})

} ;

assert (Tokens : : contains_config (input) ,
"doesn ’ t contain the config token ") ;

input .datum. inl ine . as [Config]
}

This can lead to protocol halting as config UTxO cannot be spent without valid config
changes made with the approval of governance delegate. Additionally, there is an update
delay of two weeks for every config change to be applied. This allows the agent to take
any action only once in two weeks.

Listing 10: src/lib/Config.hl
func witnessed_by_oracle (

oracle : StakingValidatorHash = Config : : find_input () . oracle
) −> Bool {

tx . withdrawals . any ((scred : StakingCredential , _) −> Bool {
scred . switch {

Hash{h} => {
h . switch {

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 30 of 46

https://anastasialabs.com/

Validator { svh } => svh == oracle ,
else => false

}
} ,
else => false

}
})

}

Similarly, oracle witness during price updates also requires config spend which prevents
frequent price update of asset tokens and DVP token.

Recommendation

To allow config UTxO to be referenced too, instead of just sResolved in
0b08946c6d988330598e2ae0817ad47178883b09 for authenticating the agent
or oracle witness.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 31 of 46

https://anastasialabs.com/

ID-301 Token Dust

Level Severity Status

3 Medium Resolved

Description

Values of all UTxOs sent to a script address must have an upper bound for their size, and
the upper bound should be low enough to not prevent consumption of the UTxO as an
input in a future transaction. If this isnt́ taken care of, a script UTxO can be subject to being
filled with many random tokens which can increase the transaction fees of subsequent
transactions. It can also make the script UTxO unspendable in cases where either new
token(s) need to be added to it or script execution budgets are exhausted while finding
the required token in the value.

This common vulnerability is known as "Token Dust Attack." We found this attack vector
at the following places:

• Returned mint/burn order output can contain many useless
(voucher.price < supply.start_price) voucher nft tokens which are not checked for
(facilitated by self.diff().delete_policy(Tokens::policy)). An agent can mint all
the voucher nfts in a previous transaction to carry out this attack later.

• The reimbursement UTxO sent to userś return_address is not checked for dust
tokens.

• contains_only_any_assets , other policies are not checked for. While it’s usage is fine
for validating inputs, its insufficient for outputs.

• AssetPtr::resolve_output , an unused function yet stated here for completeness.

Recommendation

To fail validation upon finding unnecessary tokens in output values.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 32 of 46

https://anastasialabs.com/

ID-201 Locked Portfolio Reduction

Level Severity Status

2 Minor Resolved

Description

The transaction of addition/removal of an asset class requires the portfolio reduction state
to be in Reducing mode instead of Idle . This is not necessary as the Config datum has
been updated to contain the on-chain proof of existence or non-existence of an asset. A
Reducing mode prevents updation of prices or movement of assets till the update delay

is finished (two weeks currently) which stalls the protocol. The alternative would be to
reset the reduction to Idle and then recompute the reduction before the update is to be
applied, which is expensive and nonoptimal.

Listing 11: src/portfolio_validator.hl
func validate_add_asset_class (config0 : Config , config_is_spent : Bool ,

portfolio0 : Portfol io , _portfolio1 : Portfol io) −> Bool {
(id , group0) = AssetGroup : : find_single_input () ;
group1 = AssetGroup : : find_output (id) ;
/ / needs reduction proof to be present
DoesNotExist { asset_class } = portfolio0 . get_reduction_result () ;
AddingAssetClass { expected_asset_class }

= config0 . state . get_proposal () ;

group1 . assets == group0 . assets . append(Asset : : new(asset_class))
&& group1 . is_not_overful l ()
&& asset_class == expected_asset_class
&& config_is_spent
&& Tokens : : nothing_minted () / / x01 duplicate check

}

func validate_remove_asset_class (config0 : Config , config_is_spent : Bool ,
portfolio0 : Portfol io , _portfolio1 : Portfol io) −> Bool {
(id , group0) = AssetGroup : : find_single_input () ;
group1 = AssetGroup : : find_output (id) ;
/ / needs reduction proof to be present
Exists { asset_class , found } = portfolio0 . get_reduction_result () ;
RemovingAssetClass { expected_asset_class }

= config0 . state . get_proposal () ;

asset = group0 . assets . f i l t e r ((asset : Asset) −> {
asset . asset_class == asset_class

}) . get_singleton () ;

found

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 33 of 46

https://anastasialabs.com/

&& asset . count == 0
&& group1 . assets == group0 . assets . f i l t e r ((asset : Asset)

−> { asset . asset_class != asset_class })
&& asset_class == expected_asset_class
&& config_is_spent
&& Tokens : : nothing_minted ()

}

Recommendation

To obtain the asset class to be added/removed from Config datum and not rely on
PortfolioReductionMode of Portfolio.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 34 of 46

https://anastasialabs.com/

ID-202 Mandatory Reimbursement Return

Level Severity Status

2 Minor Resolved

Description

The current Reimbursement Validator logic demands a reimbursement UTxO to be sent
to return_address even when the actual reimbursement is zero or negligible, instead of
avoiding it altogether. This results in higher transaction costs and additional minimum
ADA costs for the protocol.

Recommendation

A lower threshold for reimbursement token can be decided below which reimbursement
need not be provided.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 35 of 46

https://anastasialabs.com/

ID-203 Restricted Only-ADA Output

Level Severity Status

2 Minor Resolved

Description

It is intended that Vault also locks ADA in its own separate UTxO (without any CNT), the
below condition will prevent it from happening.

Listing 12: src/lib/Vault.hl
func d i f f () −> Value {

addr = Addresses : : vault ;
. . .
in = tx . outputs . fold ((prev : Value , output : TxOutput) −> {

i f (
output . address == addr
&& output .datum. inl ine . as [ByteArray] == VAULT_DATUM
/ / this check w i l l f a i l for UTxO with only lovelaces
&& output . value . delete_lovelace () . f latten () . length == 1

) {
prev + output . value

} else {
prev

}
} , Value : : ZERO) ;

in − out
}

Recommendation

To modify the check to output.value.delete_lovelace().flatten().length <= 1

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 36 of 46

https://anastasialabs.com/

ID-204 Voucher Overcompensation

Level Severity Status

2 Minor Resolved

Description

Listing 13: src/burn_order_validator.hl
delta_alpha = calc_provisional_success_fee (

price ,
order . d i f f () ,
n_burn

) ;

n_expected = deduct_burn_fee (n_burn − delta_alpha) ;

It is possible to incur a negative provisional success fee if large number of vouchers are
provided in the burn order when delta_alpha < 0 . This would warrant additional value to
be provided to the user (> n_burn) which would not be allowed by Supply Validator’s limit
on value extracted from vault. Leading to failed processing of burn order.

Recommendation

To impose a lower bound of zero on delta_alpha value.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 37 of 46

https://anastasialabs.com/

ID-101 Asset Count Tick Redundant

Level Severity Status

1 Informational Resolved

Description

Asset object contains count_tick to keep track of update to its count. From its
current usage (in sum_total_asset_value invoked by validate_start_reduction and
validate_continue_reduction), asset.count_tick ’s utility can be eliminated entirely by

just relying on tick from supply reference input directly. The supply validator assures the
tick in the Supply datum always has the largest value (supply.tick >= asset.count_tick
for all assets).

Recommendation

Omit count_tick field from Asset and remove it’s usages by relying on tick from Supply
datum.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 38 of 46

https://anastasialabs.com/

ID-102 Inefficient Fund Policy Action Ordering

Level Severity Status

1 Informational Resolved

Description

Listing 14: src/fund_policy.hl
func main(args : MixedArgs) −> Bool {

args . switch {
SResolved in 0b08946c6d988330598e2ae0817ad47178883b09 => {

validate_vault_sResolved in 0b08946c6d988330598e2ae0817ad47178883b09()
} ,
Other => {

i f (tx . inputs . any ((input : TxInput) −> { input . output_id
== SEED_ID })) {

v a l i d a t e _ i n i t i a l i z a t i o n ()
} else i f (Tokens : : get_minted ()

. any_key (TokenNames : : has_assets_prefix)) {
validate_mint_or_burn_asset_groups ()

} else {
validate_mint_or_burn_dvp_tokens_vouchers_or_reimbursement ()

}
}

}
}

The Fund Policy relies on script context for determining the exact action performed
instead of obtaining it from redeemer. Actions must be checked for in the descending
order of their frequency to reduce non-value adding computations. Checking for inputs
containing the Seed input would always return false after the initialization has happened.

Recommendation

The ordering can be modified as below to check for the most frequent action first:

Listing 15: src/fund_policy.hl
func main(args : MixedArgs) −> Bool {

args . switch {
SResolved in 0b08946c6d988330598e2ae0817ad47178883b09 => {

validate_vault_sResolved in 0b08946c6d988330598e2ae0817ad47178883b09()
} ,
Other => {

const minted_tokens = Tokens : : get_minted () ;
i f (minted_tokens . contains_dvp_tokens ()) {

witnessed_by_supply ()

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 39 of 46

https://anastasialabs.com/

} else i f (minted_tokens
. any_key (TokenNames : : has_assets_prefix)) {
witnessed_by_portfolio ()

} else i f (witnessed_by_reimbursement ()) {
true

} else {
tx . inputs . any ((input : TxInput)

−> { input . output_id == SEED_ID })
&& v a l i d a t e _ i n i t i a l i z a t i o n ()

}
}

}
}

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 40 of 46

https://anastasialabs.com/

ID-103 Inefficient Reduction - Exists

Level Severity Status

1 Informational Resolved

Description

Portfolio reduction mode Exists helps in creating an on-chain proof of existence of a
particular asset class in the portfolio. It expects to iterate over all the asset groups even if
the required asset is already found leading to unnecessary on-chain computations.

Recommendation

Allow completion of portfolio reduction mode Exists if an asset class is found
in the current transaction by expecting group_iter of reduction be equal to
portfolio.n_groups .

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 41 of 46

https://anastasialabs.com/

ID-104 Optimize Function diff_counted

Level Severity Status

1 Informational Resolved

Description

Listing 16: src/lib/Vault.hl
func diff_counted (d_lovelace : Int , expected_tick : Int) −> Value {

m: Map[AssetClass] Int =
tx . inputs . fold ((m: Map[AssetClass] Int , input : TxInput) −> {

. . .
id = TokenNames : : parse_assets (token_name) . unwrap () ;
group_asset_class = Tokens : : assets (id) ;

output = tx . outputs . find ((output : TxOutput) −> {
output . address == Addresses : : assets
&& output . value . get_safe (group_asset_class) == 1

}) ;

. . .
}

diff_counted helps in checking Vault::counters_are_consistent , used by Supply
Validator. The process of finding the output with the required assets group id can be
optimized by providing output indices as a redeemer. Currently, all the outputs are
iterated by checking individual address and value which is quite expensive, especially if
large number of orders are being processed using many asset groups.

Recommendation

The Supply Validator redeemer can be updated to contain []AssetPtr and asset group
output indices ([]Int). The order of output indices must match the order of asset group
inputs. For e.g. If first asset group input has group id 2, then its corresponding output’s
index must be the first element of the ouput indices array.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 42 of 46

https://anastasialabs.com/

ID-105 Redundant Mint Check

Level Severity Status

1 Informational Resolved

Description

validate_add_asset_class and validate_remove_asset_class check for
Tokens::nothing_minted() which is redundant.

Recommendation

To remove the check.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 43 of 46

https://anastasialabs.com/

ID-106 Redundant Output Asset Iteration

Level Severity Status

1 Informational Resolved

Description

Ensuring that every asset present in the AssetGroup inputs is present in the output and
n_assets_in_inputs == n_assets_in_outputs is sufficient. Checking for every asset in the
AssetGroup outputs present in the input is redundant and expensive.

Listing 17: src/portfolio_validator.hl
n_assets_in_outputs = tx . outputs . fold ((n_assets : Int , output : TxOutput)
−> {

i f (output . address == Addresses : : assets) {
assert (Tokens : : contains_only_any_assets (output) ,

"doesn ’ t contain only 1 assets token ") ;

group = output .datum. inl ine . as [AssetGroup] ;
assert (group . is_not_overful l () ,

" output assetgroup i s overful l ") ;

/ / redundant check
group . assets . fold ((n_assets : Int , asset1 : Asset) −> {

asset0 = AssetGroup : : find_input_asset (asset1 . asset_class) ;

assert (asset0 == asset1 , " asset can ’ t change ") ;

n_assets + 1
} , n_assets)

} else {
n_assets

}
} , 0) ;

Recommendation

To remove the redundant check.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 44 of 46

https://anastasialabs.com/

ID-107 Duplicated Voucher Check

Level Severity Status

1 Informational Resolved

Description

The check on voucher.price and voucher.period_id is performed twice, in Mint Order
Validator and by Supply Validator in validate_minted_vouchers .

Recommendation

It is sufficient to have the check carried out only once.

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 45 of 46

https://anastasialabs.com/

ID-108 Unnecessary Output Traversal

Level Severity Status

1 Informational Resolved

Description

All the outputs are traversed by validate_minted_vouchers to ensure that voucher ids are
created in an incremental order. However, the traversal is expected even if no vouchers are
minted (when current_price < year_start_price) which is unnecessary. It is also expensive
because there can be many outputs, a consequence of numerous mint orders being
processed.

Listing 18: src/lib/Voucher.hl
func validate_minted_vouchers (price : Ratio , period_id : Int ,

last_voucher_id : Int) −> (Int , Int) {
. . .

last_voucher_id = tx . outputs . fold ((prev_id : Int , output : TxOutput)
−> {

i f (output . address == Addresses : : voucher) {
id = prev_id + 1;

assert (Tokens : : contains_only_voucher_ref (output , id) ,
"voucher doesn ’ t have expected id ") ;

id
} else {

prev_id
}

} , last_voucher_id) ;

(n_vouchers_minted , last_voucher_id)
}

Recommendation

Avoid output traversal when n_vouchers_minted == 0 .

Resolution

Resolved in 0b08946c6d988330598e2ae0817ad47178883b09

Anastasia Labs – PBG Decentralized Vault Portfolios
Confidential

Copyright © Anastasia Labs
Page 46 of 46

https://anastasialabs.com/

	Disclosure
	Disclaimer and Scope
	Assessment overview
	Assessment components
	Executive summary
	Code base
	Repository
	Commit
	Files audited

	Severity Classification
	Finding severity ratings
	Findings
	ID-501 Unauthorized Asset Additions
	ID-502 Unbounded Voucher Claim
	ID-503 Incorrect Reimbursement Calculation
	ID-504 Price Manipulation
	ID-505 Locked Assets Group
	ID-401 Missing Success Fee Validation
	ID-402 Reimbursement Multiple Satisfaction
	ID-403 Invalid Voucher NFT
	ID-404 Lost Management Fee
	ID-405 Reimbursement Failure
	ID-406 Cannot Provide Vouchers
	ID-407 Unnecessary Config Spend
	ID-301 Token Dust
	ID-201 Locked Portfolio Reduction
	ID-202 Mandatory Reimbursement Return
	ID-203 Restricted Only-ADA Output
	ID-204 Voucher Overcompensation
	ID-101 Asset Count Tick Redundant
	ID-102 Inefficient Fund Policy Action Ordering
	ID-103 Inefficient Reduction - Exists
	ID-104 Optimize Function diff_counted
	ID-105 Redundant Mint Check
	ID-106 Redundant Output Asset Iteration
	ID-107 Duplicated Voucher Check
	ID-108 Unnecessary Output Traversal

