
D
RA
FT

Decentralized Vault Portfolios

Christian Schmitz Pablo Antonio Bejarano

13th July 2024

Abstract

This article introduces Decentralized Vault Portfolios (DVPs). DVPs are tokenized
investment funds controlled by a smart contract, tailored to extended Unspent Trans-
action Output (eUTxO) blockchains. DVPs allow management of funds without custody,
offering unparalleled transparency and security to their token holders.

Contents

1 Introduction 4

2 Tokenization 5

3 Vault 6

4 Orders 7

5 Price 8

6 Fees 10

7 Governance 17

8 Oracles 19

9 Staking 19

10 Compliance 20

A Tokens and datums 21

B Validators 25

C Transactions 45

1

D
RA
FT

List of Terms

ADA Cardano’s native cryptocurrency

address blockchain analogy of a bank account number

datum information attached to an Unspent Transaction Output (UTxO)

lovelace one millionth of an ADA

validator an on-chain script that validates a transaction

witness a public key or a validator script. A transaction has at least one witness

Acronyms

AML Anti Money Laundering

CFT Combating the Financing of Terrorism

CIP Cardano Improvement Proposal

DAG Directed Acyclical Graph

DAO Decentralized Autonomous Organization

DVP Decentralized Vault Portfolio

eUTxO extended Unspent Transaction Output

KYC Known Your Customer

NFT Non-Fungible Token

UTxO Unspent Transaction Output

Mathematical symbols

∆α success fee dilution

∆µ management fee dilution

N total number of DVP tokens in circulation

V total asset value of a DVP

α DVP token success, a ratio of two benchmark prices

δα provisional success fee

δb burn fee, as a number of tokens

δ̂b min burn fee, as a number of tokens

δm mint fee, as a number of tokens

δ̂m min mint fee, as a number of tokens

φα relative success fee, a function

φb relative burn fee

φm relative mint fee

φµ relative management fee

nb number of DVP tokens in a burn order

p on-chain DVP token price relative to ADA

π on-chain DVP token price relative to a benchmark

2

D
RA
FT

πref start of period on-chain DVP token price relative to a benchmark

π∗ on-chain DVP token price relative to a benchmark, after the success fee is charged

t−tx start of transaction validity timerange interval

t+tx end of transaction validity timerange interval

v value of deposited or withdrawn assets

3

D
RA
FT

1 Introduction

Blockchains and smart contracts are novel technologies that can radically increase the trans-
parency and security of financial services. Decentralized Vault Portfolios (DVPs) are tokenized
investment funds that take advantage of these innovations.

DVPs have the following notable properties:

i. Tokenization of fund shares

ii. Active or passive management without custody

iii. Entry or exit at any time, anywhere (instant global liquidity)

iv. Participation of any size

v. Conventional fee structure (entry/exit fee, management fee, success fee)

vi. Large investment universe (hundreds of assets per DVP)

vii. Eliminates parasitic management practices (e.g. charging commission on trades)

viii. Decentralized control of parameters

ix. Compliant (AML/CFT)

Many of these properties naturally favor extended Unspent Transaction Output (eUTxO)
blockchains and we have chosen to develop the first implementation of the DVP smart contract
for Cardano (an advanced public eUTxO blockchain).

Some concepts used in this article are Cardano-specific and might not yet have equivalents in
other eUTxO blockchains.

Examples

Blue boxes contain calculation examples with concrete values.

Notes

Orange boxes contain security notes that deserve special attention.

4

D
RA
FT

2 Tokenization

By representing DVP shares as cryptocurrency tokens, global exposure to a DVP is available
through secondary markets. Tokenization also allows DVP shares to be used for payments,
similar to cash, and to interact with other smart contracts (e.g. an inheritance smart contract).

Henceforth, we will refer to DVP shares as DVP tokens.

Example: simple fee-less tokenized fund

Imagine a fund initially composed as follows:

Asset Quantity Unit price [USD] Value [USD]

USD 50 1 50

ADA 100 0.5 50

DVP token 100 1 100

The 100 DVP tokens minted upon formation each have an initial value of 1 USD. The
holder of such a token can withdraw 1 USD-worth of assets from the fund per token. For
example a user with 10 tokens can withdraw 5 USD + 10 ADA. After such a withdrawal
10 tokens are taken out of circulation and the fund composition becomes:

Asset Quantity Unit price [USD] Value [USD]

USD 45 1 45

ADA 90 0.5 45

DVP token 90 1 90

If the ADA price suddenly doubles, from 0.5 USD to 1 USD, the composition changes to:

Asset Quantity Unit price [USD] Value [USD]

USD 45 1 45

ADA 90 1 90

DVP token 90 1.5 135

A user entering the fund after such a market event would have to deposit 1.5 USD-worth
of assets per DVP token received. For example a deposit of 15 USD results in 10 DVP
tokens returned, changing the fund composition:

Asset Quantity Unit price [USD] Value [USD]

USD 60 1 60

ADA 90 1 90

DVP token 100 1.5 150

5

D
RA
FT

3 Vault

The DVP smart contract protects funds locked at the vault address, ensuring the value of
the DVP tokens is maintained. The following three transaction types interact with the vault
address:

1. Swap

2. Withdraw

3. Deposit

3.1 Swap

Swapping vault assets must conserve (or increase) the total value locked at the vault address.
The DVP also ensures that the various assets are correctly counted. These counts facilitate the
calculation of the on-chain token price.

An on-chain oracle price feed is used when calculating changes to the total value locked at the
vault address.

The use of oracles is what allows active management without custody. The oracle config-
uration is of critical importance to vault security.

Liquidity provision

By spreading the assets over any number of UTxOs, the swap transaction can be used to provide
liquidity to multiple other protocols in parallel.

Note: only one asset class per UTxO

By permitting only one asset class per vault UTxO (in addition to ADA) we avoid a
UTxO spam exploit, which make such UTxOs unspendable. More generally we need to
ensure that internal DVP UTxOs can never contain more than a few asset classes.

3.2 Withdraw

The net value of the withdrawn assets is calculated using the same on-chain oracle price feeds.
This value must not be greater than the value of the DVP tokens being burned in the same
transaction.

3.3 Deposit

The net value of the deposited assets results in a number of DVP tokens of equal value being
minted and returned to the users.

6

D
RA
FT

4 Orders

Users interact with a DVP by submitting orders. There are two types of orders:

1. Mint orders (requests to deposit funds and receive DVP tokens in return)

2. Burn orders (requests to withdraw funds by exchanging DVP tokens)

A user must specify the following details for each order (contained in the datum):

• Return address (wallet or another contract)

• Return datum (should be unique to prevent the double satisfaction exploit)

• Minimum received tokens in case of a mint order, minimum received value in case of a
burn order

• Maximum age of the on-chain token price and asset prices involved in the transaction

The minimum return value must be set to realistically, taking into account the fees. Unfavorable
or badly configured orders are simply ignored by the DVP manager.

Mint orders are sent to the mint order validator, and burn orders are sent to the burn order
validator. These validators act in the interest of the user.

Each order is submitted as a separate UTxO. Once an order is submitted two actions are
possible:

1. The order can be canceled by the user

2. The order can be fulfilled by the DVP manager

An order can sit indefinitely at the address of the mint or burn order validator if the minimum
received value condition can’t be met and the user decides not to cancel.

Note: datum tagging to prevent double satisfaction

Upon order fulfillment, the returned UTxO must have the requested datum. Without
datum tagging the smart contract would allow two orders with the same return address
to be fulfilled at the same time by only returning sufficient value for the largest of the
two orders.

7

D
RA
FT

5 Price

An important aspect of DVPs is the on-chain calculation of the DVP token price. Having this
price available on-chain has several advantages:

• No reliance on secondary market arbitrageurs (initially secondary markets will be very
illiquid and oracle price feeds for the DVP token won’t be accurate)

• The success fee can be calculated deterministically

• The mint and burn order validators can guarantee a fair conversion at all times

The on-chain token price must be updated frequently, a non-trivial action. DVPs do this by
keeping track of each underlying asset using counters. An on-chain token price update then
proceeds by summing over these asset counters, combined with oracle price feeds, to calculate
the ratio of the total asset value and the token circulating supply.

5.1 Initial price

The initial on-chain price of a DVP token can be arbitrarily set. The initial price determines
how many tokens are minted by the initial deposit.

5.2 Asset counting

The number of tokens of each underlying asset in the vault is tracked on-chain using special
counters. The set of these asset counters must match exactly the intended investment universe
at all times. Duplicate asset counters aren’t possible.

Note: duplicate asset counters

If duplicates were possible one of the duplicates could contain a low count, the other a
high count, and alternating between the two when calculating the total value would allow
the DVP manager to mint at a low price and burn at a high price, ignoring any other
orders while taking advantage of this exploit.

Adding/removing asset counters

Initially the investment universe only contains ADA.

Before adding a new asset counter, a proof must be generated that it doesn’t already exist.
Generating this proof might require many transactions, as it involves iterating over all the asset
counters in existence.

Finally the proof is used when adding the asset counter for the given asset class.

Removing an asset class requires an existence proof to be generated for the given asset class,
and that its count is 0.

8

D
RA
FT

5.3 Price update

The on-chain DVP token price is the ratio of the total fund value over the number of DVP
tokens in circulation. This must be updated regularly to reflect changes in the composition of
the fund, and to reflect changes of the price changes of the underlying assets.

The asset counters can’t be changed during this process, which can be ensured by making sure
they are older than the initiation of the total asset value calculation.

Timestamps are not very accurate when working with deterministic transactions because they
can only be compared to intervals. Instead of using time directly, DVPs increment an on-chain
tick value.

This tick is incremented every time an asset counter is updated.

The total asset value calculation can then start by copying the ADA count and the current tick
value. All subsequent asset counters being iterated over must then have a tick that is smaller
or equal to the start tick.

The final price update ensures all asset counters have been iterated over, and copies the total
asset value into the price UTxO.

Price recency

The tick allows us to chain price update transactions. However, we still need to use timestamps
to ensure prices are recent. During total asset value calculation, the DVP token price timestamp
tp is taken as the minimum of the asset price timestamps:

tp = min(ta) ∀a ∈ Avault

We then compare tp to the end of the transaction validity time-range t+tx to ensure the price is
more recent than a period τp:

tp ≥ t+tx − τp

9

D
RA
FT

6 Fees

DVPs can be configured with the following fees:

1. Entry fee

2. Exit fee

3. Management fee

4. Success fee

Each fee is optional, and charged in the form of DVP tokens.

6.1 Entry fee

The entry fee, also referred to as the mint fee, is a constant fraction of the deposited value,
bound by a minimum.

This lower bound ensures that at least the blockchain network fees are covered by the mint fee.

Mint fee formula

Let p denote the current DVP price in ADA, let v denote the equivalent ADA value of the
order, let φm denote the relative mint fee, and let δ̂m denote the mint fee lower bound. The
number of DVP tokens withheld as a mint fee δm is calculated as:

δm = max(φm ·
v

p
, δ̂m)

Example: mint fee calculation

Assume the DVP charges a mint fee of 0.5%, with a minimum of 0.02 tokens, and that
the current on-chain DVP token price is 100 ADA/token. A deposit of 200 ADA results
in 2 DVP tokens being minted. The number of DVP tokens withheld as a mint fee is
calculated as:

0.005 · 200

100
= 0.005 · 2 = 0.01

Because 0.01 < 0.02, the mint fee is corrected upward to 0.02.

10

D
RA
FT

6.2 Exit fee

The exit fee is a combination of a burn fee and a provisional success fee. This fee is thus a
non-constant fraction of the tokens burned nb.

Burn fee formula

The burn fee is calculated like the mint fee, parametrized with its own fraction and lower bound:

δb = max(φb · (nb − δα), δ̂b)

The provisional success fee δα is explained in section 6.4.

6.3 Management fee

The management fee is charged for all DVP token holders by diluting the DVP token supply
by a constant fraction. The DVP ensures that this cannot happen more frequently than a
configured period (typically 24 hours) by validating the change of the last management fee
mint event tµ:

tµ,1 ≥ t+tx
tµ,0 ≤ t−tx − τµ

DVP token dilution when charging the management fee decreases the value of each DVP token.

Note: why the management fee can’t be accumulated

The management fee is charged for all token holders in the form of the token dilution.
Token dilution has an immediate impact on the on-chain token price. Dilution events
should be as predictable as possible to avoid influencing secondary markets. If it would be
possible to accumulate the management fee over many days, a malicious DVP manager
could borrow a large amount of DVP tokens, sell them, suddenly negatively impact the
price by minting all the management fee at once, and buy the DVP tokens back at a
cheaper rate (i.e. shorting the DVP tokens with leverage, taking advantage of insider
information).

Management fee formula

Let N denote the number of DVP tokens in circulation, and let V denote the DVP total asset
value. If we want to charge a periodic fee of φµ (typically 0.01% daily, or 3.65% annually), as a
number of DVP tokens equivalent in value to φµ · V , the original N tokens will be worth only
(1− φµ) · V .

Using the equivalence of each DVP token, we can calculate the management fee dilution ∆µ as:

φµ · V
∆µ

=
(1− φµ) · V

N

⇒ ∆µ = N · φµ
1− φµ

11

D
RA
FT

Note that V doesn’t impact this calculation.

Example: management fee calculation

Assume the DVP charges a daily management fee of 0.01%, and there are currently 1000
DVP tokens in circulation. The DVP manager is allowed to mint the following number
of DVP tokens as a management fee once the day has passed:

1000 · 0.0001

1− 0.0001
= 1000 · 0.0001

0.9999
≈ 0.10001

The resulting number is very close to φµ ·N = 0.1. For larger relative management fees
the difference will be more pronounced.

6.4 Success fee

Many conventional funds charge an annual success fee depending on their performance with
respect to some benchmark (eg. S&P 500).

DVPs can be configured with a progressive success fee, which can approximate any mathemat-
ical function.

Success fees are an important incentive for DVP managers to react quickly to market changes
and to properly analyze and model the future performance of the underlying assets.

Success fees are more complex than daily management fees, because all token holders can’t be
diluted equally. Token holders that minted at a higher token price should be charged less than
users who held the tokens since before the start of the year. We accomplish this by diluting all
holders equally at the end of the year, and then partially reimbursing holders who have some
proof they minted tokens during the year at a price level higher than the start of the year. We
refer to these proofs as vouchers.

Benchmark

DVPs might prefer benchmarks other than comparing to the blockchain’s base currency, and
will thus need to combine the on-chain DVP token price with an oracle price feed for that
particular benchmark.

Success fee formula

Let πref and π denote the on-chain year-start and year-end prices relative to the benchmark
respectively. Success α is calculated as:

α =
π

πref

If α ≤ 1, no success fee is charged. If α > 1, a fraction of α − 1 is charged as the relative
success fee. Let φα denote this fraction, which is a progressive step function with coefficients
ci and steps σi:

12

D
RA
FT

φα(α) =
k−1∑
i=0

(
ci ·min[max(α− σi, 0), σi+1 − σi]

)
+ ck ·max(α− σk, 0) with σ0 = 1

φα(α) is visualized in figure 1.

α

φα(α)

c0 · (σ1 − σ0)

c1 · (σ2 − σ1)
+c0 · (σ1 − σ0)

σ1 σ2σ0 = 1 α

φ′α(α)

c0

c1

c2

σ1 σ2σ0 = 1

Figure 1: a progressive step function with two steps, and its derivative

Upon dilution the token holders expect to keep α − φα(α) of the success. Let α∗ denote this
net success after dilution. The price after dilution π∗ is calculated as:

α∗ =
π∗

πref
≡ α− φα(α) =

π

πref
− φα(α)

⇒ π∗ = π − πref · φα(α)

Because total asset value V doesn’t change, π∗ ·(N+∆α) = π ·N holds. The success fee dilution
∆α is calculated as:

π∗ = π − πref · φα(α) ≡ N · π
N + ∆α

⇒ ∆α =
N · π

π − πref · φα(α)
−N

⇒ ∆α =
N · α

α− φα(α)
−N

⇒ ∆α = N · φα(α)

α− φα(α)

Note: valid φα coefficients

Monotonicity of ci is not a requirement, but it is important that each coefficient lies
within a limited range to avoid datum spam.

0 ≤ ci ≤ 1 and σi−1 < σi ≤ σmax

13

D
RA
FT

Example: success fee calculation

Assume the DVP charges a success fee of 30% on any success above 5% (so σ0 = 1, c0 = 0,
σ1 = 1.05 and c1 = 0.3), there are 1000 DVP tokens in circulation, the benchmark is
ADA, and the price increased from 100 ADA/token to 150 ADA/token. The success fee
fraction φα is calculated as:

α =
150

100
= 1.5

φα(1.5) = 0 ·min[max(1.5− 1, 0), 0.05]

+ 0.3 ·max(1.5− 1.05, 0)

= 0.3 · 0.45 = 0.135

The success fee that can be minted at the end of the year is calculated as:

∆α = 1000 · 0.135

1.5− 0.135
≈ 98.901099

After the success fee is minted the on-chain DVP token price decreases to:

1000 · 150 = (1000 + 98.901099) · π∗

⇒ π∗ = 150 · 1000

1098.901099
= 136.5 ADA/token

136.5 = 150− 13.5, so this is the expected DVP token price after dilution.

Vouchers

Vouchers are on-chain proofs that a user minted a number of DVP tokens at a certain benchmark
price level. A voucher is used to lower the provisional success fee when burning DVP tokens,
or to receive an end-of-year success fee reimbursement.

A voucher consists of two CIP-68 NFTs:

1. A reference token locked at the voucher validator address

2. A user token returned to the user

Both NFTs have the same serial number. The user token will have a non-zero value before the
year’s success is fee minted, so during this time it might be traded on secondary markets.

Provisional success fee when burning

A user that would withdraw right before the end of the year wouldn’t see an on-chain token
price affected by the upcoming success fee dilution. To prevent users taking advantage of this,
a provisional success fee must be charged as part of the exit fee.

The provisional success fee is calculated by comparing the most recent on-chain benchmark
price with that of the start of the year.

Let nb denote the number of tokens being burned and let π denote the on-chain benchmark
price at the moment of burning. The provisional success fee δα is calculated as if the success

14

D
RA
FT

fee would be minted right at that moment and the user would be left with the same number of
tokens nb at a lower price π∗:

α =
π

πref

(nb − δα) · π = nb · π∗ and π∗ = π − πref · φα(α)

⇒ nb − δα = nb ·
(

1− πref
π
· φα(α)

)
⇒ δα = nb ·

φα(α)

α

Example: provisional success fee calculation without vouchers

Assume the DVP charges a success fee of 30% on any success above 5%, the benchmark
is ADA, the token price at the start of the year was 100 ADA/token, and the current
token price is 140 ADA/token. A user burning 10 DVP tokens would be charged the
following provisional success fee:

α =
140

100
= 1.4

φα(1.4) = 0.3 · (1.4− 1.05) = 0.105

δα = 100 · 0.105

1.4
= 0.75 tokens

The 9.25 remaining tokens have a value of 1295 ADA, so the user sees an effective gain
of 29.5%, instead of the internal 40% DVP gain. The difference is 10.5%-pt, as expected.

Including vouchers in the burn order allows calculating δα using a higher price for part of the
nb tokens. Let nv denote the number of DVP tokens when the voucher was minted, and let πv
denote the benchmark price at time of minting. The provisional success fee δα is now calculated
as:

αv =
π

πv

δα =
∑

vouchers

(
nv ·

φα(αv)

αv

)
+ (nb −

∑
vouchers

nv) ·
φα(α)

α

The provisional success fee can become negative if too many vouchers are included, in this case
no provisional success fee is charged. Vouchers are always burned in their entirety, so such a
burn order would be wasteful.

15

D
RA
FT

Example: provisional success fee calculation with vouchers

Again assume the DVP charges a success fee of 30% on any success above 5%, the
benchmark is ADA, the token price at the start of the year was 100 ADA/token, and the
current token price is 140 ADA/token. A user burning 10 DVP tokens and 1 voucher for
5 tokens at a price of 120 ADA/token would be charged the following provisional success
fee:

α =
140

100
= 1.4

αv =
140

120
≈ 1.166667

φα(1.4) = 0.3 · (1.4− 1.05) = 0.105

φα(1.166667) = 0.3 · (1.166667− 1.05) = 0.035

δα = 5 · 0.035

1.166667
+ 5 · 0.105

1.4
= 0.525 tokens

Success fee reimbursement

The number of tokens that would be charged from the start of the year until the current price
level, minus the success fee charged from the price level of the voucher until the current on-chain
price, must be reimbursed at the end of the year if the voucher wasn’t used during the year.

The number of reimbursed tokens nreim is calculated as:

α =
π

πref
and αv =

π

πv

nreim = nv ·
(φα(α)

α− φα(α)
− φα(αv)

αv − φα(αv)

)

Example: success reimbursement calculation

Assume the DVP charges a success fee of 30% on any success above 5%, the benchmark
is ADA, the token price at the start of the year was 100 ADA/token, and the year end
token price is 150 ADA/token. A user has an outstanding voucher for 10 DVP tokens at
a price level of 120 ADA/token. The reimbursement is calculated as:

α =
150

100
= 1.5

αv =
150

120
= 1.25

φα(1.5) = 0.3 · (1.5− 1.05) = 0.135

φα(1.25) = 0.3 · (1.25− 1.05) = 0.06

nreim = 10 ·
(0.135

1.5− 0.135
− 0.06

1.25− 0.06
)

= 10 · (0.098901− 0.050420) ≈ 0.48481 tokens

16

D
RA
FT

7 Governance

DVPs have a set of updateable parameters, listed in table 5.

Every parameter update goes through the governance process visualized in figure 2. Parameter
updates are delayed and can’t be done concurrently. This process gives the maximal possible
visibility to each update.

Start

Update in
progress?

Fail

Create
update

proposal tx

Collect
signatures

Submit
proposal

Wait

Delay
passed?

Apply change

Stop

yes

no

no

yes

in progress

Figure 2: governance flowchart for updating DVP parameters

The voting mechanism itself, referred to as the governance delegate, is updateable. Table 4
describes 3 example governance delegates.

Complexity Description

Low A multi-signature script

Mid Two multi-signature scripts, one for the critical parameters, and
another for the non-critical parameters. The multi-signature script
hashes are specified in special UTxOs which are locked at the multi-
signature addresses themselves, so they can be updated using the
same quorums.

High A DAO voting hierarchy with publicly distributed DAO tokens

Table 4: example governance delegates

17

D
RA
FT

Parameter UTxO Actions C
ri

ti
ca

l?

Oracle delegate hash config Vote to change the oracle yes

Change the oracle

Governance delegate hash config Vote to change governance yes

Change governance

Update delay config Vote to change governance yes

Change governance

Agent public key hash config Vote to change the agent no

Change the agent

Investment universe assets Vote to add asset class yes

(asset classes) Add asset class

Vote to remove asset class no

Remove asset class

Success fee benchmark config Vote to update the success fee no

Success fee progressive steps Update the success fee

Success fee period supply

Maximum token supply config Vote to increase max token supply no

Increase the max token supply

Relative mint fee config Vote to change the mint fee no

Minimum mint fee Change the mint fee

Relative burn fee config Vote to change the burn fee no

Minimum burn fee Change the burn fee

Relative management fee config Vote to change the management fee yes

Management fee period Change the management fee

Maximum price age config Vote to change the max price age yes

Change the max price age

Metadata (100) Vote to change the metadata no

Change the metadata

Table 5: updateable DVP parameters.

18

D
RA
FT

8 Oracles

An oracle service is a third-party service that makes off-chain data available on-chain. Oracles
are typically used for accessing asset price data with on-chain validators. Oracles are a critical
component of DVPs.

All state-of-the-art eUTxO oracles are datum-based. Different oracles have different datum
structures, so DVPs can’t reference oracle datums directly.

To maintain flexibility, DVPs delegate oracle price feed validations to an oracle delegate, en-
suring price feeds are correctly copied from oracle-specific datums into the asset counter datum
price fields.

The oracle delegate can be changed through governance.

Note: oracle independence

If the DVP manager is able to influence an oracle price feed, they would be able to lower
the price of an underlying asset, update the DVP token price, mint cheaply, revert the
price and burn expensively, extracting all value from the DVP in one movement.

Note: ability to switch oracles

A DVP cannot rely on a single, hardcoded oracle. An oracle can go offline, or its reputa-
tion might become tainted due to malfeasance. DVPs must maintain the ability to change
oracle. By changing oracles through the delayed governance process, token holders are
given time to exit the DVP if they don’t trust the change.

Note: price feed delays

Due to the volatility of on-chain assets and limitations of Cardano’s on-chain time (ac-
curate to about 5 minutes), significant differences can occur between oracle price feeds
and market prices. This provides arbitrage opportunities for the DVP manager, which
must be compensated for by lowering the fees.

9 Staking

ADA is essential for securing blockchain consensus through staking. Smart contracts can also
participate in staking by using staking validators. This would however add significant com-
plexity to the DVP smart contract.

Instead DVPs do not directly participate in staking and use so-called unstaked enterprise ad-
dresses for the DVP smart contract. If the proportion of ADA in a DVP becomes large, it
should be exchanged for “staked-ADA” wrapped tokens.

Staked-ADA wrapped tokens use an independent staking validator that ensures the staking
rewards are added to the reserves of those wrapped tokens. This effectively tokenizes the
blockchain staking rewards.

By choosing precisely which staked-ADA wrapped tokens to hold, a DVP can participate indi-
rectly in securing blockchain consensus.

19

D
RA
FT

10 Compliance

Blockchains are permissionless networks where any entity can send funds to any other entity.
This is problematic as illicit funds can contaminate clean funds when mixed at a payment
address.

On account-based blockchains this is difficult to avoid as an address balance is simply a number,
and illicit funds entering that balance immediately contaminate that balance’s clean funds.
Compliant account-based smart contracts thus require special rules to limit such transfers.

On UTxO-based blockchains this is easier to avoid simply because each UTxO remains a sep-
arate entity, and can’t contaminate the receiving address unless the receiver decides to spend
that UTxO. So before spending UTxOs with an unknown origin, such UTxOs must be checked
against chain-analysis databases before proceeding.

All DVP transactions that are at risk of contaminating the contract must be signed by the DVP
manager. We refer to this signing key as the agent. Only order cancellation and governance
updates don’t require an agent signature.

10.1 Secondary markets

Secondary market trading of DVP tokens is legally beneficial. Few jurisdictions permit selling
financial services without KYC and proof of investor accreditation. However, what those in-
vestors then do with those tokens is their own legal responsibility. The entity operating the
DVP doesn’t carry the legal burden of secondary market trading.

20

D
RA
FT

A Tokens and datums

Token names and on-chain data structures must be defined before defining the requirements of
the validators and the topology of the transactions.

A.1 Tokens

A DVP consists of the tokens named in table 6. (100), (222) and (333) are CIP-68 prefixes.
The internal stateful tokens don’t use token name prefixes because the CIP-68 datum structure
would create too much overhead. The voucher and asset group ids are 1-based indices. The
reimbursement period id can be arbitrarily set but must increase monotonically (eg. 2024,
2025, etc.).

Name Description Unique

(100) token metadata yes

(333) the DVP token itself no

assets <group-id> asset prices and counts series

config governance parameters yes

portfolio summary of assets yes

price token price yes

reimbursement <period-id> success fee reimbursement marker series

supply token and voucher supply yes

(100)voucher <voucher-id> voucher reference token series

(222)voucher <voucher-id> voucher user token series

Table 6: overview of the tokens minted using the fund policy.

Note: ticker

The ticker isn’t part of the token names because it wouldn’t be updateable (though the
metadata ticker is updateable).

21

D
RA
FT

A.2 Datums

Table 7 contains an overview of the datum structure of each stateful UTxO type.

UTxO Type Fields

Mint order Return address

Return datum

Minimum number of tokens

Maximum price age τorder,p

Burn order Return address

Return datum

Minimum ADA equivalent or minimum value

Maximum price age τorder,p

Metadata Name

(100) Description

Decimals

Ticker

Website URL

Logo URI

Assets group List of:

assets <id> Asset class

Count na

Count tick ka

Price pa

Price timestamp ta

Updateable parameters Agent public key hash

config Fees:

Relative mint fee φm

Minimum mint fee δ̂m

Relative burn fee φb

Minimum burn fee δ̂b

Relative management fee φµ

Management fee period duration τµ

Success fee progressive steps (ci and σi)

Success fee benchmark delegate hash

Token:

Maximum token supply Nmax

Maximum price age τp

Oracle delegate hash

Governance:

Update delay τgov

Delegate hash

22

D
RA
FT

UTxO Type Fields

Updateable parameters (cont.) State as one of:

config Idle

Changing

Timestamp of current proposal tgov

Proposal as one of:

AddingAssetClass

Asset class

RemovingAssetClass

Asset class

UpdatingSuccessFee

New success fee period duration

New success fee benchmark delegate hash

New success fee progressive steps

IncreasingMaxTokenSupply

New max token supply

ChangingAgent

New agent public key hash

ChangingOracle

New oracle delegate hash

ChangingGovernance

New governance delegate hash

New update delay

ChangingMintFee

New relative mint fee

New minimum mint fee

ChangingBurnFee

New relative burn fee

New minimum burn fee

ChangingManagementFee

New relative management fee

New management fee period duration

ChangingMaxPriceAge

New maximum price age

ChangingMetadata

Hash of new metadata

23

D
RA
FT

UTxO Type Fields

Portfolio summary Total number of asset groups

portfolio Reduction state as one of:

Idle

Reducing

Number of asset groups iterated over

Start tick kp

Reduction mode as one of:

TotalAssetValue

Total asset value V

Oldest asset price timestamp tp

Exists

Asset class

Found?

DoesNotExist

Asset class

Token price Total asset value V (in lovelace, numerator)

price Token supply N (denominator)

Oldest asset price timestamp tp

Success fee reimbursement Remaining number of vouchers

reimbursement <id> Success fee start benchmark price πref

Success fee end benchmark price π

Success fee progressive steps (ci and σi)

Token and voucher supply Tick k

supply Token supply N

Voucher supply Nvouchers

Last voucher id

Number of lovelace in vault VADA

Last management fee charge timestamp tµ

Success fee:

Period id

Start timestamp tα

Period duration τα

Start benchmark price πref

Voucher reference token Return address

(100)voucher <id> Return datum

Number of DVP tokens nvoucher

Benchmark price pvoucher

Period id

NFT metadata (name, description, image, url)

Table 7: overview of on-chain datum structures.

24

D
RA
FT

B Validators

This section lists the requirements of each DVP smart contract script:

1. Fund policy (mixed use script)

2. Mint order validator

3. Burn order validator

4. Supply validator

5. Assets validator

6. Portfolio validator

7. Price validator

8. Reimbursement validator

9. Voucher validator

10. Config validator

11. Metadata validator

12. Oracle delegate

13. Benchmark delegate

14. Governance delegate

Mathematical symbols with superscript ‘−’ denote values before transaction submission, and
symbols with superscript ‘+’ denote values after transaction submission.

For slightly more efficient lookups, the validators can depend on each other’s hashes. These
hash dependencies are visualized as a graph in figure 3.

25

D
RA
FT

Fund
policy

Benchmark
delegate

Governance
delegate

Oracle
delegate

Supply
validator

Price
validator

Portfolio
validator

Reimb.
validator

Voucher
validator

Metadata
validator

Config
validator

Assets
validator

Figure 3: DAG of hash interdependencies between the DVP validators (excluding the mint and
burn order validators).

26

D
RA
FT

B.1 Fund policy

The fund token policy, which doubles as the vault validator, witnesses the initialization of a
new DVP (metadata, config, portfolio, price and supply UTxOs). For other transactions
the validations are delegated to the supply validator or the portfolio validator by ensuring the
supply or portfolio token is spent.

The fund policy requirements are specified in table 8.

Action / Conditions Requirements

Spend The supply UTxO is spent

Validator is called with 3 arguments

Init Signed by the agent specified in the initial config datum

The hardcoded UTxO is spent 5 tokens are minted:

(100) (metadata)

config

portfolio

price

supply

The metadata UTxO is sent to the metadata validator
address, contains no other tokens, and has the expected
datum

The config UTxO is sent to the config validator address,
contains no other tokens, and has the expected datum

The portfolio UTxO is sent to the portfolio validator
address, contains no other tokens, and has the expected
datum

The price UTxO is sent to the price validator address,
contains no other tokens, and has the expected datum

The supply UTxO is sent to the supply validator address,
contains no other tokens, and has the expected datum

The initial success fee is valid

Mint/burn asset group The portfolio UTxO is spent

An assets token is minted/burned

Mint other The supply UTxO is spent

Table 8: requirements for the token policy and vault validator script.

27

D
RA
FT

B.2 Mint order validator

The mint order validator ensures a user always receives the equivalent value in return (minus
fees) when the mint order is spent.

The mint order validator requirements are specified in table 9.

Action Requirements

Cancel Witnessed by return address spending credential

Fulfill Signed by the agent

tp ≥ t+tx − τp
ta ≥ t+tx − τp ∀a ∈ Aorder
A single return UTxO exists which matches the return
address and return datum specified in the order

The value difference is not larger than the allowable mint
fee (calculated using the token difference)

The returned number of tokens is not smaller than the
minimum number of tokens specified in the order

If the benchmark price is higher than the year-start price,
assert that a reference voucher with the correct datum
is sent to the voucher validator, and a user voucher is
returned to the user

Table 9: mint order validator requirements

The fulfillment transaction fees are covered by the DVP manager, so the mint fee should be
sufficient to cover these. The returned user voucher is placed in the same return UTxO to make
fulfilling a bit cheaper.

The DVP manager can get away with not actually minting any tokens during this transaction
and returning previously minted tokens (and vouchers) instead. From the user’s perspective
this doesn’t matter.

The security risk of overlap between the Cancel and Fulfill actions is irrelevant because any
overlap would require the transaction to be approved by the user.

28

D
RA
FT

B.3 Burn order validator

The burn order validator ensures a user always receives the equivalent value in return (minus
fees) when the burn order is spent.

The burn order validator requirements are specified in table 10.

Action Requirements

Cancel Witnessed by return address spending credential

Fulfill Signed by the agent

tp ≥ t+tx − τp
A single return UTxO exists which matches the return
address and return datum specified in the order

All necessary asset counters needed while calculating the
value difference between the order and the return UTxO
are recent

The value difference is not larger than the allowable exit
fee, which is calculated using the token difference and any
vouchers in the order UTxO

The returned value is not smaller than the minimum re-
turn value specified in the order (optionally converted to
equivalent ADA)

Table 10: burn order validator requirements

Like the mint order validator, the security risk of overlap between the Cancel and Fulfill
actions is irrelevant because any overlap would require the transaction to be approved by the
user.

29

D
RA
FT

B.4 Supply validator

The supply validator is the core validator of the DVP smart contract, ensuring the security of:

• DVP token minting

• Voucher minting

• Reimbursement minting

• Asset group counting

• Vault spending (empty datum)

• supply UTxO spending (k, N , Nvouchers, VADA, tµ, period id, tα, τα, p0)

To prevent inconsistencies between the action and the actual transaction, the actions are derived
from the transaction context itself. Each action has the following general requirements:

The action-specific requirements are specified in table 11. The order of the action conditions
is important.

Action / Conditions D
V

P
to

ke
n

m
in

ti
n
g

V
ou

ch
er

m
in

ti
n
g

R
ei

m
b
u
rs

em
en

t
m

in
ti

n
g

A
ss

et
gr

ou
p

co
u
n
ti

n
g

V
au

lt
sp

en
d
in

g

Requirements

All Signed by the agent

The supply UTxO is sent back to the supply
validator itself, containing only ADA and the
supply token

k+ = k− + 1

N+ = N− + ∆

The number and position of asset groups and
counters doesn’t change

t+tx − t−tx < 1day (prevents success fee running
ahead)

All except Period id doesn’t change

reward success t+α = t−α
τ+α = τ−α
p+0 = p−0

All except t+µ = t−µ
reward management

30

D
RA
FT

Action / Conditions D
V

P
to

ke
n

m
in

ti
n
g

V
ou

ch
er

m
in

ti
n
g

R
ei

m
b
u
rs

em
en

t
m

in
ti

n
g

A
ss

et
gr

ou
p

co
u
n
ti

n
g

V
au

lt
sp

en
d
in

g

Requirements

Reward success 3 7 3 7 7 ∆ = ∆α (avoids voucher deadlock)

t+tx > t−α + τα ∆ ≥ 0

tp ≥ t+tx − τp
t+α = t−alpha + τα

The period id is incremented by 1

N+
vouchers = 0

The last voucher id is reset to 0

V +
ADA = V −ADA

Only one reimbursement token, with the cor-
rect id, is minted

Minted amount is sent to the reimbursement
validator with the correct datum, and includes
the reimbursement token

The new year duration and benchmark price are
set if the config UTxO is being spent

The config UTxO must be spent if it is being
used to update the success fee

Reward management 3 7 7 7 7 ∆ ≤ ∆µ

t+µ 6= t−µ ∆ ≥ 0

t−µ ≤ t−tx − τµ
t+µ ≥ t+tx
t+µ < t+tx + τµ (prevents unbounded datum)

N+
vouchers = N−vouchers

The last voucher id doesn’t change

V +
ADA = V −ADA

31

D
RA
FT

Action / Conditions D
V

P
to

ke
n

m
in

ti
n
g

V
ou

ch
er

m
in

ti
n
g

R
ei

m
b
u
rs

em
en

t
m

in
ti

n
g

A
ss

et
gr

ou
p

co
u
n
ti

n
g

V
au

lt
sp

en
d
in

g

Requirements

Mint user tokens 3 3 7 3 3 tp ≥ t+tx − τp
∆ > 0 V + − V − ≥ p · (N+ −N−)

N+ ≤ Nmax

The asset counters increase accordingly

The asset prices are recent

Each voucher is minted as a reference token and
a user token

Each voucher reference token is sent to the
voucher validator address with the correct da-
tum

Each voucher has a unique id

N+
vouchers increases by the number of voucher

minted

The last voucher id increases by the number of
vouchers minted

Burn user tokens 3 3 7 3 3 tp ≥ t+tx − τp
∆ < 0 V + − V − ≥ p · (N+ −N−)

The asset counters decrease accordingly

The asset prices are recent

For each voucher both the reference token and
the user token are burned

N+
vouchers decreases accordingly

The last voucher id doesn’t change

Swap assets 7 7 7 3 3 V + ≥ V −

The asset prices are recent

The asset counters change accordingly

N+
vouchers = N−vouchers

The last voucher id doesn’t change

Table 11: supply validator action requirements.

32

D
RA
FT

B.5 Assets validator

The assets validator ensures the datums of the assets UTxOs are correctly updated. These
validations are delegated to the supply validator and the portfolio validator.

We can simply require that either the supply or the portfolio validator witness the transaction.
There is no issue with these two overlapping:

1. Any transaction witnessed by the supply validator only allows changes to the asset counts
and ticks

2. Any transaction witnessed by the portfolio validator doesn’t allow changes to the as-
set counts and ticks, but does allow changes to asset class positions and prices, and
adding/removing asset classes

33

D
RA
FT

B.6 Portfolio validator

The portfolio validator ensures all the assets are correctly iterated over when determining one
of the following:

• Total asset value

• Asset class exists in the investment universe

• Asset class doesn’t exist in the investment universe

The portfolio validator also secures asset group minting, and asset group spending actions
unrelated to counting (asset counts and ticks can never change when the transaction is witnessed
by this validator).

The portfolio validator requirements are specified in table 12. There is no risk of the actions
overlapping because they are derived from the transaction context.

Action / Conditions A
ss

e
t

g
ro

u
p

m
in

ti
n
g

A
ss

e
t

g
ro

u
p

sp
e
n
d

in
g

Requirements

All Signed by agent

All except add/remove The number of asset groups stays the same

asset group

Add asset group 3 7 Idle Ô Idle

A single token is minted The minted assets token has the correct id

The number of asset groups increased by 1

The asset group is sent to the assets validator address

The asset group UTxO doesn’t contain any other tokens

The asset group datum is an empty list

Remove asset group 3 3 Idle Ô Idle

A single token is burned The burned assets token has the correct id

The number of asset groups decreased by 1

The asset group datum is the empty list

34

D
RA
FT

Action / Conditions A
ss

e
t

g
ro

u
p

m
in

ti
n

g

A
ss

e
t

g
ro

u
p

sp
e
n

d
in

g

Requirements

Any reduction start 7 7 k+p = k

Idle Ô Reducing The number of asset groups is equal to the number of
referenced asset groups

The asset groups are iterated over in order

Any reduction continue 7 7 k+p = k−p
Reducing Ô Reducing The number of asset groups is equal to the number of

referenced asset groups added to the previous value

The asset groups are iterated over in order

Sum 7 7 t+p = min(ta) ∀a ∈ A
Ô TotalAssetValue V + = VADA +

∑
a∈A pa · na

ka ≤ kp ∀a ∈ A
Continue sum 7 7 t+p = min(t−p ,min(ta)) ∀a ∈ A
TotalAssetValue V + = V − +

∑
a∈A pa · na

Ô TotalAssetValue ka ≤ kp ∀a ∈ A
Proving existence 7 7 The found flag equals true if the asset class is in any of

the referenced groups

Ô Exists

Continue proving existence 7 7 The found flag equals true if it was previously set to true
or the asset class is in any of the referenced groups

Exists Ô Exists The given asset class doesn’t change

Proving non-existence 7 7 The asset class isn’t found

Ô DoesNotExist

Continue proving non-
existence

7 7 The asset class isn’t found

DoesNotExist Ô DoesNotExist The given asset class doesn’t change

35

D
RA
FT

Action / Conditions A
ss

e
t

g
ro

u
p

m
in

ti
n

g

A
ss

e
t

g
ro

u
p

sp
e
n

d
in

g

Requirements

Add asset class 7 3 DoesNotExist Ô Idle

A single asset group is spent and returned to the assets
validator address

The DoesNotExist state specifies the added asset class

The new asset class is appended to the group list, with
the correct data

The list isn’t larger than the allowed max size

The config UTxO is consumed, proving the given asset
class was intended to be added

Remove asset class 7 3 Exists Ô Idle

A single asset group is spent and returned to the assets
validator address

The Exists state specifies the removed asset class

The removed asset class count is 0

The asset class is removed from the group list, the other
list entries remain the same

The config UTxO is consumed, proving the given asset
class was intended to be removed

Update assets 7 3 Idle Ô Idle

Witnessed by the oracle delegate

Each input asset group is also found as an output

The asset classes are found in the same positions in the
same groups

Only the price and the price timestamp can change for
each asset

Move assets 7 3 Idle Ô Idle

Each asset class in the asset group inputs is encountered
in the outputs

Each asset class in the asset group outputs is encountered
in the inputs

The total number of asset classes in the inputs and the
outputs is the same

None of the asset group lists exceeds the limit size

Reset 7 7 Reducing Ô Idle

Table 12: portfolio validator requirements

36

D
RA
FT

B.7 Price validator

The price validator ensures the price UTxO datum is correctly updated.

The requirements of the price validator are specified in table 13.

Action Requirements

Update Signed by the agent

The referenced portfolio UTxO is in TotalAssetValue

state

N is copied from the referenced supply UTxO datum

tp is copied from the portfolio UTxO datum

V is copied from the portfolio UTxO datum

Table 13: price validator requirements

37

D
RA
FT

B.8 Reimbursement validator

The reimbursement validator ensures all voucher reimbursements are correctly tracked, and
that the remaining success fee can only be extract once all reference vouchers of the given
period have been burned. The voucher validator delegates its reimbursement validations to
this validator.

The reimbursement validator requirements are specified in table 14. The actions are derived
from the transaction context.

Action / Conditions Requirements

All Signed by agent

For each voucher the right amount is sent to the return
address with the return datum

Each voucher is burned

Extract The reimbursement token is burned

The number of vouchers
burned is equal to Nvouchers

Reimburse The number of vouchers burned is deducted from
Nvouchers

The remaining tokens are sent to the same address as
part of the reimbursement UTxO

The other reimbursement datum fields remain unchanged

Table 14: reimbursement validator requirements

38

D
RA
FT

B.9 Voucher validator

The voucher validator ensures either the voucher user token is burned, or the right amount is
reimbursed (delegated to the reimbursement validator).

The voucher validator requirements are specified in table 15. The actions are derived from the
transaction context.

Action / Conditions Requirements

Burn Signed by the agent

The voucher user token is burned The voucher reference token is burned

Reimburse A reimbursement token is spent with the same pe-
riod id

Table 15: voucher validator requirements

39

D
RA
FT

B.10 Config validator

The config validator ensures the governance delegate witnesses any parameter updates, and
that parameter updates are applied after a delay. Parameter updates must be applied, and the
correctness of each update is ensured during the voting process.

Each action has the general requirement that the config UTxO is returned to the config validator
address. The config validator action-specific requirements are specified in table 16.

1. Vote to add asset class

2. Vote to remove asset class

3. Vote to update the success fee

4. Vote to increase the max token supply

5. Vote to change the agent pubkeyhash

6. Vote to change the oracle delegate

7. Vote to change governance

8. Vote to change the mint fee

9. Vote to change the burn fee

10. Vote to change the management fee

11. Vote to change max price age

12. Vote to change the metadata

13. Add asset class

14. Remove asset class

15. Update success fee

16. Update the max token supply

17. Change agent

18. Change oracle

19. Change governance

20. Change mint fee

21. Change burn fee

22. Change management fee

23. Change max price age

24. Change metadata

40

D
RA
FT

Action / Conditions Requirements

All Witnessed by the governance delegate

Idle Ô All non-state fields in the config datum
remain unchanged

All t−tx ≥ t−gov + τgov

Ô Idle

1. Vote to add asset class The referenced state UTxO proves the non-
existence of the asset class

Idle Ô AddingAssetClass

2. Vote to remove asset class The referenced state UTxO proves the ex-
istence of the asset class

Idle Ô RemovingAssetClass

3. Vote to update the success fee The vote happens within a given time in-
terval before the end of the year

Idle Ô UpdatingSuccessFee The new benchmark validator must wit-
ness the transaction

The new success fee steps are valid

The new success fee period is positive

4. Vote to increase max supply N+
max > N−max

Idle Ô IncreasingMaxTokenSupply

5. Vote to change the agent Signed by the new agent

Idle Ô ChangingAgent

6. Vote to change the oracle Witnessed by the new oracle delegate
(dummy call)

Idle Ô ChangingOracle

7. Vote to change governance Witnessed by the new governance delegate

Idle Ô ChangingGovernance τ+gov > 0

8. Vote to change the mint fee φm
+ ≥ 0

Idle Ô ChangingMintFee δ̂m
+ ≥ 0

9. Vote to change the burn fee φb
+ ≥ 0

Idle Ô ChangingBurnFee δ̂b
+ ≥ 0

10. Vote to change management fee φµ
+ ≥ 0

Idle Ô ChangingManagementFee τ+µ > 0

11. Vote to change max price age τ+p > 0

Idle Ô ChangingMaxPriceAge

12. Vote to the change the metadata Metadata hash is 32 bytes long

Idle Ô ChangingMetadata

41

D
RA
FT

Action / Conditions Requirements

13. Add asset class An assets UTxO is spent which doesn’t
contain the asset class, and its output does
contain the asset class

AddingAssetClass Ô Idle

14. Remove asset class The associated assets UTxO is spent, and
the output doesn’t contain the asset class

RemovingAssetClass Ô Idle

15. Update success fee A reimbursement token is minted with the
correct period id

UpdatingSuccessFee Ô Idle

16. Increase max token supply

IncreasingMaxTokenSupply Ô Idle

17. Change agent

ChangingAgent Ô Idle

18. Change oracle

ChangingOracle Ô Idle

19. Change governance

ChangingGovernance Ô Idle

20. Change mint fee

ChangingMintFee Ô Idle

21. Change burn fee

ChangingBurnFee Ô Idle

22. Change management fee

ChangingManagementFee Ô Idle

23. Change max price age

ChangingMaxTokenPriceAge Ô Idle

24. Change metadata The metadata UTxO is spent

ChangingMetadata Ô Idle The hash of the new metadata datum
matches the parameter change

Table 16: config validator requirements.

42

D
RA
FT

B.11 Metadata validator

The metadata validator ensures metadata changes are specified by the config UTxO and that
the metadata UTxO is returned to the same address.

The metadata validator requirements are specified in table 17.

Action Requirements

Change Signed by the agent

The metadata UTxO is returned to
the same address

Config state change:
ChangingMetadata Ô Idle

Table 17: metadata validator requirements

43

D
RA
FT

B.12 Oracle delegate

The oracle delegate ensures prices and timestamps of any asset classes in spent assets UTxOs
are correctly updated.

The current Cardano oracle solutions are seriously lacking in functionality, reliability, speed,
cost, so this is currently just a multi-sig script.

B.13 Benchmark delegate

The benchmark delegate ensures the redeemer price ratio is equal to the oracle price feed.
Initially ADA itself can be used a benchmark, which means the ratio value given as a redeemer
must be equal to unity.

B.14 Governance delegate

Initially, this will be a simple multi-signature script. Later, it can be upgraded to a valida-
tor wrapping two multi-signature scripts (one for critical parameters, another for non-criticial
parameters), each independently updatable using its own quorum.

44

D
RA
FT

C Transactions

This section gives a visual overview of each DVP transaction. The network transaction fee and
collateral UTxOs are omitted.

1. Initialize DVP

2. Create mint order

3. Cancel mint order

4. Fulfill mint order

5. Create burn order

6. Cancel burn order

7. Fulfill burn order

8. Swap assets

9. Update asset price

10. Count total asset value

11. Update token price

12. Add assets group

13. Prove non-existence of asset class

14. Add asset class

15. Prove existence of asset class

16. Remove asset class

17. Remove assets group

18. Move asset class

19. Reward management

20. Reward success

21. Reimburse success fee

22. Extract success fee

23. Prepare parameter update

24. Update config

25. Change metadata

45

D
RA
FT

C.1 Initialize DVP

Fund
policy

Agent
wallet

Initialize
DVP

Supply
validator

Config
validator

Metadata
validator

Portfolio
validator

Price
validator

tokens

hardcoded UTxO

supply

(1
00
)

co
nf
ig

portfolio

price

C.2 Create mint order

User
wallet

Create
mint order

Mint order
validator

assets order

46

D
RA
FT

C.3 Cancel mint order

Mint order
validator

Cancel
mint order

User
wallet

order assets

C.4 Fulfill mint order

Mint order
validator

Fund
policy

Fulfill
mint order

Config
validator

Supply
validator

Assets
validator

User
wallet

Voucher
validator

Treasury

Fund
policy

DVP tokens +
voucher

order

as
set

s

mint fee

DVP tokens + voucher
voucher reference token

c
o
n
f
i
g

s
u
p
p
l
y

a
s
s
e
t
s

This transaction is also witnessed by the benchmark delegate.

47

D
RA
FT

C.5 Create burn order

User
wallet

Create
burn order

Burn order
validator

DVP tokens + vouchers order

C.6 Cancel burn order

Burn order
validator

Cancel
burn order

User
wallet

order DVP tokens + vouchers

48

D
RA
FT

C.7 Fulfill burn order

Burn order
validator

Fund
policy

Voucher
validator

Fulfill
burn order

Config
validator

Supply
validator

Assets
validator

User
wallet

Treasury

Fund
policy

order

assets

voucher
ref

ere
nce

tokens DVP tokens + voucher

exit fee

assets

c
o
n
f
i
g

s
u
p
p
l
y

a
s
s
e
t
s

This transaction is also witnessed by the benchmark delegate.

49

D
RA
FT

C.8 Swap assets

Fund
policy

Swap
assets

Config
validator

Supply
validator

Assets
validator

Liquidity
source

c
o
n
f
i
g

s
u
p
p
l
y

a
s
s
e
t
s

assets assets

C.9 Update asset price

Assets
validator

Update
asset price

Config
validator

config
assets

This transaction is also witnessed by the oracle delegate.

50

D
RA
FT

C.10 Count total asset value

Portfolio
validator

Count
total asset

value

Config
validator

Assets
validator

assets

c
o
n
f
i
g

portfolio

This transaction must be repeated until all asset groups are iterated over.

C.11 Update token price

Price
validator

Update
token price

Portfolio
validator

Supply
validator

Config
validator

price
portfolio

sup
ply

config

51

D
RA
FT

C.12 Add assets group

Portfolio
validator

Add assets
group

Config
validator

Assets
validator

Fund
policy

assets <group-id>

c
o
n
f
i
g

asse
ts

group token

portfolio

52

D
RA
FT

C.13 Prove non-existence of asset class

Portfolio
validator

Prove non-
existence
of asset

class

Config
validator

Assets
validator

assets

c
o
n
f
i
g

portfolio

The topology of this transaction is identical to the count total asset value transaction. This
transaction must be repeated until all the asset groups have been iterated over.

C.14 Add asset class

Portfolio
validator

Add asset
class

Config
validator

Assets
validator

c
o
n
f
i
g

portfolio assets <group-id>

This transaction must be preceded by a proof of non-existence of the asset class.

53

D
RA
FT

C.15 Prove existence of asset class

Portfolio
validator

Prove
existence
of asset

class

Config
validator

Assets
validator

assets

c
o
n
f
i
g

portfolio

The topology of this transaction is identical to the count total asset value transaction and the
prove non-existence of asset class transaction. This transaction must be repeated until the
given asset class is encountered.

C.16 Remove asset class

Portfolio
validator

Remove
asset class

Config
validator

Assets
validator

c
o
n
f
i
g

portfolio assets <group-id>

The topology of this transaction is identical to the add asset class transaction. This transaction
must be preceded by a proof of existence of the asset class.

54

D
RA
FT

C.17 Remove assets group

Portfolio
validator

Remove
assets
group

Config
validator

Fund
policy

Assets
validator

asse
ts <gro

up-i
d>

c
o
n
f
i
g

assets group token
portfolio

C.18 Move asset class

Config
validator

Move
asset class

Assets
validator

config
assets

55

D
RA
FT

C.19 Reward management

Supply
validator

Reward
man-

agement

Config
validator

Treasury

Fund
policy

reward

c
o
n
f
i
g

DVP tokens

supply

C.20 Reward success

Supply
validator

Reward
success

Config
validator

Fund
policy

Reimb.
validator

DVP tokens + rei
mbu

rse
men

t

c
o
n
f
i
g

success fee
supply

This transaction is also witnessed by the benchmark delegate.

56

D
RA
FT

C.21 Reimburse success fee

Reimb.
validator

Voucher
validator

Reimburse
success fee

Config
validator

User
wallet

Fund
policy

voucher

DVP tokens

voucher

c
o
n
f
i
g

reimbursement

Remaining success fee is kept in the state UTxO.

C.22 Extract success fee

Reimb.
validator

Extract
success fee

Config
validator

Treasury

Fund
policy

DVP tokens

c
o
n
f
i
g

reimbursement

reimbursement token

57

D
RA
FT

C.23 Prepare parameter update

Config
validator

Prepare
parameter

update

Supply
validator

Portfolio
validator

supply

portfolio

config

This transaction is also witnessed by the governance delegate. This transaction is also used to
prepare updates of the config, assets and (100) (metadata) UTxOs.

Referencing the supply or portfolio UTxOs allows checking if the update is valid (e.g. max
token supply can only increase, proof of non-existence of asset class).

C.24 Update config

Config
validator

Update
config

config

This transaction has the same topology as the prepare config update transaction, except that
this transaction isn’t witnessed by the governance delegate.

C.25 Change metadata

Config
validator

Change
metadata

Metadata
validator

config (100)

58

	Introduction
	Tokenization
	Vault
	Orders
	Price
	Fees
	Governance
	Oracles
	Staking
	Compliance
	Tokens and datums
	Validators
	Transactions

